The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities.
نویسندگان
چکیده
Mammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys(59)/Cys(64)), and a C-terminal cysteine/selenocysteine motif (Cys(497)/Sec(498)). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions. In the absence of its main electron-accepting substrates (e.g. thioredoxin), wild-type TrxR generates superoxide (O ), which was here detected and quantified by ESR spin trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The peroxidase activity of wild-type TrxR efficiently converted the O adduct (DEPMPO/HOO(*)) to the hydroxyl radical adduct (DEPMPO/HO(*)). This peroxidase activity was Sec-dependent, although multiple mutants lacking Sec could still generate O . Variants of TrxR with C59S and/or C64S mutations displayed markedly reduced inherent NADPH oxidase activity, suggesting that the Cys(59)/Cys(64) dithiol is required for O generation and that O is not derived directly from the FAD. Mutations in the Cys(59)/Cys(64) dithiol also blocked the peroxidase and disulfide reductase activities presumably because of an inability to reduce the Cys(497)/Sec(498) active site. Although the bulk of the DEPMPO/HO(*) signal generated by wild-type TrxR was due to its combined NADPH oxidase and Sec-dependent peroxidase activities, additional experiments showed that some free HO(*) could be generated by the enzyme in an H(2)O(2)-dependent and Sec-independent manner. The direct NADPH oxidase and peroxidase activities of TrxR characterized here give insights into the full catalytic potential of this enzyme and may have biological consequences beyond those solely related to its reduction of thioredoxin.
منابع مشابه
The Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملEpigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unid...
متن کاملSelenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.
Selenium compounds like selenite (SeO3(2-) may form a covalent adduct with glutathione (GSH) in the form of selenodiglutathione (GS-Se-SG), which is assumed to be important in the metabolism of selenium. We have isolated GS-Se-SG and studied its reactions with NADPH and thioredoxin reductase from calf thymus or with thioredoxin reductase and thioredoxin from Escherichia coli. Incubation of 0.1 ...
متن کاملThioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells.
Certain selenoproteins such as GPX-1 (glutathione peroxidase-1) and TrxR1 (thioredoxin reductase-1) possess important antioxidant defence functions in vascular endothelial cells. Reduced selenoprotein activity during dietary selenium (Se) deficiency can result in a compensatory increase of other non-Se-dependent antioxidants, such as HO-1 (haem oxygenase-1) that may help to counteract the damag...
متن کاملSelenium supplementation protects trophoblast cells from oxidative stress.
Oxidative stress is a key feature in the pathogenesis of pre-eclampsia and antioxidants have been proposed as a potential therapy in the treatment of this important complication of pregnancy. In this report selenium supplementation was used to up-regulate the antioxidant enzymes glutathione peroxidase and thioredoxin reductase and the protective effect that this had on cellular metabolism durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 28 شماره
صفحات -
تاریخ انتشار 2010